586a4e78cb69ea09508136c9

آیا فناوری، رقیبی جدی برای مترجمان خواهد بود؟

 

سال‌ها پیش در پروازی از آمستردام به بوستون، دو راهبۀ آمریکایی سمت راست من نشسته بودند و به حرف‌های مرد جوانِ خوش‌صحبتی از اهالی هلند گوش می‌دادند. مرد جوان قصد داشت ایالات متحده را ازنو کشف کند. او از راهبه‌ها پرسید اهل کجا هستند؟ افسوس که شهر فرامینگهام در ماساچوست جزوِ برنامۀ سفرش نبود؛ اما اعلام کرد که «یه خروار۱ وقت داره و قراره از یه خروار جای مختلف دیدن کنه».

جوان سرخوشِ هلندی به‌وضوح این را دریافته بود که «خروار» مترادف جذابی برای «زیادِ» بی‌رنگ‌وبوست. او علم نحو انگلیسی را به‌خوبی فرا گرفته بود و دایرۀ لغات نسبتاً گسترده‌ای هم داشت؛ اما فاقد تجربۀ تناسب کلمات با بافت‌های اجتماعی بود.

خبر اخیر، که موتور ترجمۀ گوگل قرار است از سیستم عبارت‌محور به شبکۀ عصبی۲ تغییر کند، این خاطره را به ذهنم آورد. تفاوت‌های فنیِ این دو در این لینک تشریح شده است. هر دو روش متکی به آموزش ماشین با یک «پیکرۀ متنی» شامل جمله‌های جفتی‌اند: جملۀ اصلی و ترجمۀ آن. سپس کامپیوتر، براساس توالی کلمات در متن اصلی، قواعدی برای استنباط محتمل‌ترین توالی کلمات در زبان مقصد استخراج می‌کند.

من مترجمی حرفه‌ای هستم و تاکنون حدود ۱۲۵ کتاب از زبان فرانسه ترجمه کرده‌ام. بنابراین ممکن است از من انتظار برود که در برابر ادعای گوگل از کوره در بروم که موتور ترجمۀ جدیدش تقریباً به‌خوبی مترجمی انسانی است، زیرا از صفر تا شش، نمرۀ پنج را کسب می‌کند، درحالی‌که میانگین انسان‌ها 5.1 بوده است. اما علاوه‌برآن دکترای ریاضی هم دارم و نرم‌افزاری ساخته‌ام که روزنامه‌های اروپایی را به چهار زبان مختلف «می‌خواند» و نتایج را براساس موضوع دسته‌بندی می‌کند. پس به‌جای اینکه در برابر احتمال جایگزین‌شدن بامترجم ماشینی موضع دفاعی بگیرم، از قابلیت‌های چشمگیر ماشین‌ها آگاه و نسبت‌به پیچیدگی و مهارت تکنیکیِ کار گوگل سراپا ستایشم.

اما این ستایش چشم‌هایم را بر نواقص ترجمۀ ماشینی نمی‌بندد. مسافر هلندی را به یاد بیاورید که «یه خروار» انگلیسی می‌دانست. فصاحت مرد جوان نشان می‌داد که «خیس‌افزار»۳ یا به‌عبارتی شبکۀ عصبی زندۀ او به‌خوبی برای درک شهودیِ قواعد ظریف (و استثناها)، که زبان را طبیعی می‌کنند، آموزش دیده بود. در مقابل، زبان‌های کامپیوتری دستورزبانی بدون بافت دارند. اما هلندیِ جوانْ فاقد تجربۀ اجتماعی از زبان

از قابلیت‌های چشمگیر ماشین‌های ترجمه آگاه و نسبت‌به مهارت تکنیکیِ کار گوگل سراپا ستایشم انگلیسی بود تا قواعدِ ظریف‌تری را درک کند که به انتخاب واژه، لحن و ساختارِ زبانیِ یک بومی شکل می‌دهند. گوینده‌ای بومی نیز ممکن است، برای دست‌یافتن به نتیجه‌ای خاص، شکستن این قواعد را انتخاب کند. اگر من به دو نفر راهبه به‌جای «جاهای زیادی» می‌گفتم «یه خروار جا»، حتماً از آن منظوری می‌داشتم؛ اما مرد هلندی به ورطۀ طنزِ ناخواسته افتاد.

موتور ترجمۀ گوگل با استفاده از پیکره‌های متنیِ متفاوت، از منابع خبری گرفته تا ویکیپدیا، «آموزش‌دیده» است. یگانه سرنخی که موجب پی بردن به بافت یک پیکره می‌شود، توصیف سادۀ آن پیکره است. استنباطِ تناسب یا عدم‌تناسبِ واژه‌ای مثل «خروار» از چنین اطلاعاتِ اندکیْ سخت خواهد بود. اگر بنا به ترجمۀ این واژه به فرانسه باشد، ماشین می‌تواند معادلی مناسب را برای آن در beaucoup یا ۴plusieurs حدس بزند. این معادل‌ها ممکن است معنای گفته را ارائه کنند، اما طنز آن را نه. زیرا این طنز وابسته به واژۀ «خروار» است که از لحاظ اجتماعی نشانه‌دار است، درحالی‌که plusieurs خنثی است. هرچقدر هم که الگوریتم پیچیده باشد، باید به اطلاعات فراهم‌شده تکیه کند و سرنخ‌ها دربارۀ بافت، به‌خصوص بافت اجتماعی، برای انتقال از طریق کُد بسیار مشکل‌اند.

نمی‌گویم که ترجمۀ مکانیکی سودمند نیست. مقدار زیادی از کارِ ترجمهْ تکراری است. گاهی اوقات ماشین‌ها از عهدۀ انجامِ کاری بسنده برمی‌آیند. اما نباید انتظار معجزه، ترجمه‌های ادبی شایسته یا ارائۀ مناسبِ متلک‌های سیاسی را داشت. پژوهش‌های مرتبط با هوش مصنوعی، از همان روزهای آغازین، زیر سایۀ ادعاهای مغرورانه بوده‌اند. این را از ترس شغلم نمی‌گویم: از ترجمه بازنشسته شده‌ام و این روزها بخشی از وقتم را صرف کدنویسی می‌کنم.

 

آرتور گُلدهمر

ترجمه علی امیری
منبع: http://tarjomaan.com/vdcc.xq4a2bq1xla82.html

 

بیشتر